Excerpt from proceedings of the **COMSOL CONFERENCE 2020** TOKYO

誘電体メタサーフェスの電磁場解析と 東エ大TSUBAME3.0での利用

岩見健太郎

東京農工大学 大学院工学研究院 先端機械システム部門

東京農工大学 岩見研究室

Topics: MEMS/NEMS, プラズモニクス、メタサーフェス Group Members in 2020AY

教員2名 大学院生: 7, 学部生: 6 研究内容: メタレンズ、ホログラフィ、ガスセンサ

本日の内容

- 1. メタサーフェス・メタレンズの概要
- 2. 誘電体導波路とCOMSOLによる電磁場解析
- 3. 可変焦点メタレンズ

4. まとめ

メタマテリアルとメタサーフェス

- ・ 光メタマテリアル ✓サブ波長サイズの構造 (メタアトム)からなる、 屈折率が制御された物質 ✓負の屈折率など、自然界に 存在しない特性も可能
- ・メタサーフェス
 - ✓メタマテリアルのうち 平面的なもの
 - ✓微細加工との親和性
 - ✓金属や誘電体の微細構造の配列

マテリアル

メタマテリアル

原子(アトム)

金属メタサーフェス

メタサーフェスで可能な光機能

K. Iwami et al, APL 2012

Au nanoaperture array R. Izumi, et al, Opt. Exp 2020

K. Iwami et al, Opt. Exp. 2020

光に与える位相分布を制御することで、様々な光機能を実現

メタレンズとは

- メタサーフェス (メタ表面)を応用 したレンズ
- ・小型・薄い (~λ/(*n*-1))
- リソグラフィ1回
 で製作可能

Harvard Univ. Capassoら、Nano Lett. 19, 8673 (2019)

Top 10 Emerging Technologies for 2019

3 ENGINEERING : TINY LENSES WILL ENABLE DESIGN OF MINIATURE OPTICAL DEVICES

Thin, flat metalenses could replace bulky glass for manipulating light

1. Bioplastics 6. Collaborative for a Telepresence Circular Economy Social Advanced **Robots** Food Tracking and Packaging 3. Tiny Lenses Safer for Miniature Nuclear **Devices** Reactors Disordered DNA Data Proteins Storage as Drug Targets 10. Utility-Scale 5. Smarter Storage of Fertilizers Can Reduce Renewable Environmental Energy

Contamination

https://www.scientificamerican.com/article/top-10-emerging-technologies-of-2019/

メタサーフェスレンズ : "メタレンズ"の例

- 凸レンズの波面変換
 - 入射平面波を 収束球面波に変換

位相分布: $\phi(\mathbf{r}) \sim \frac{\pi}{\lambda f} r^2$

• 既存のレンズとメタレンズの比較

本日の内容

- 1. メタサーフェス・メタレンズの概要
- 2. 誘電体導波路とCOMSOLによる電磁場解析
- 3. 可変焦点メタレンズ

4. まとめ

メタアトム:Si誘電体導波路

- 誘電体の円柱状導波路の伝搬位相遅延を利用
- ・柱の直径に応じて透過光の位相が変化
- ・ 偏光依存なし、2πの位相可変範囲

メタアトム設計のための電磁場解析

- あるナノ構造の光学応答を知りたい
- ・設計波長における光透過率と位相遅延を 求めたい:<u>高い透過率と0~2πの位相遅延の双方が重要</u>
- 3次元計算でやりたい
- ・ 調和振動(単色光)の定常計算でよい
 - FDTD法(Finite Difference Time Domain: FDTD法:時間領域)
 - RCWA法: 周期構造のみ
 - FEM(COMSOL等): 定常状態の計算なら低コスト

COMSOLの「波動光学」モジュールの
 「電磁波(周波数領域)(ewfd)」フィジックスを利用

やること

- 空間中に、計算したい構造を定 義する
- それぞれの領域に物質定数
 (比誘電率ε_r(ω),比透磁率
 μ_r(ω),)を設定する
- ・入射光電場Eを定義する (単色調和振動を仮定) $E(r,t) = E_0(r) \exp i\omega t$
- 空間にメッシュを切る
- ・ 電場の波動方程式 $<math>
 \nabla^2 E_0 - \mu_r \epsilon_r k_0^2 E_0 = 0
 を解いて
 電場の空間分布 <math>
 E_0(r)
 を求める$
- 透過率と位相遅延を算出
- IAI

COMSOLのMaterial Library Si

結晶Si	COMSOLのMaterial Library -> 光学 -> Inorganic Material	
材料名	refractiveindex.info の材料名	出典
Si (Apsnes)	Aspnes and Studna 1983: n,k 0.21-0.83 μm	Phys. Rev. B 27, 985-1009 (1983)
Si (Edwards)	Edwards and Ochoa 1980: n 2.5-25 μm	<u>Appl. Opt., 19, 4130-4131 (1980)</u>
Si (Li)	Li 1980: n 1.2-14 µm; 293 K (Temp.)	<u>JPC Ref. Data 9, 561-658 (1993)</u>
Si (Salzberg)	Salzberg and Villa 1957: n 1.36-11 μm	<u>JOSA, 47, 244-246 (1957)</u> <u>Appl. Opt. 23, 4477-4485 (1984)</u>
Si (Vuye)	Vuye et al. 1993: n,k 0.26-0.83 μm (Temp.) SC [111] wafer	<u>Thin Solid Films 233, 166-170</u> (1993)

アモルファスSi

材料名	refractiveindex.info の材料名	出典
Si (Pierce)	Pierce and Spicer 1972: α-Si; n,k 0.0103- 2.07 μm	Phys. Rev. B 5, 3017-3029 (1972) (Palik. Ed., Handbook of optical constants of solids 1985)

標準材料ライブラリ->Elements->Si やMEMSライブラリ->Semiconductors->Siは 屈折率が入っていなかったり、あっても定数だったりするので注意を要する

Si膜は800 nm未満で吸収が大きい

当初の計算条件

- 底面に入射ポートを設定
 (周期、x方向偏光)
- 上面に出射ポートを設定
- ±x側面、±y側面に
 Floquet周期境界条件を設定
- フィジックス制御メッシュを 用いてメッシュを自動生成 要素サイズは下記の通り
 - ✓ ノーマル (Normal)
 - ✓ 細かい (Fine)
 - ✓ より細かい (Finer)
 - ✓ さらに細かい (Extra Fine)
 - ✓ きわめて細かい(Extremely Fine)
- ・ 東エ大 TSUBAME3.0を利用

TSUBAME 3.0

- 東工大に設置された共用スーパー コンピュータ(理論性能47.2 PFlops)
- ーロ10万円で約1000時間・ノード利用可能
 (1ノード当たりCPU28Core, Memory 240GB, 4GPU)

- 農工大で所有するネットワークライセンス(FNL)を提供することで、COMSOLの利用が可能に
- Rescale等、民間のHPCサービスでも同様の利用形態が可能

±x, ±y境界とも周期境界条件(連続)の場合、境界付近で電場が異常に
 大きい領域(アーティファクト)がみられる 自然界には存在しないはず

原因

ファイル・

アプリケー

モデ

4 🚸

- •"雷磁波(周波数領域)(ewfd)"フィジックス の設定で、フィジック ス制御メッシュを有効 にしていなかった →周期境界条件に対 応したメッシュが生成 されていなかった。
- Ver. 5.1

🗋 📨 🔚 🔣 🕨 ') (' 💷 🗉 🖷 🛄 🦉	
ルマ ホーム 定義 ジオメトリ 材料	フィジックス メッシュ スタディ 結果
A 警モデルデータアクセス リケーションビルダー 新規メソッドをレコード テストアプリケーション アプリケーション	 → →
デルビルダ → ▼ ▼ ■ ■ ■ ■ ▼ S aSi900_hexa.mph (root)	特性 設定 電磁波(周波数領域) 選択: 全ドメイン
 ▲ ● クレーバル定義 Pi パラメ-9 (param) ● 材料 ■ コンポーネント 1 (comp1) (comp1) ▶ 三 定義 ▶ △ ジオメトリ 1 (geom1) ● 材料 ▲ 材料 	1 2 アクティブ 3
 ▶ 1 (wee1) ▶ 1 (wee1) ▶ 1 (pec1) 	▼ 方程式
▷ 🔚 初期値 1 <i>{init1}</i> ▷ 🔚 ポート 1 <i>{port1}</i>	方程式形:
 ▶ ■ ポート 2 {port2} ▶ ■ 周期条件 1 {pc1} 	コントロールされたスタディ
▷ ■ 周期条件 2 {pc2} ▷ ■ 周期条件 3 {pc3}	スタディ 1 {std1}, Wavelength domain {wave}
誤f 方程式ビュー (info) ▲ メッシュ 1 (mesh1)	$\nabla \times \mu_r^{\rm L} (\nabla \times {\rm E}) - k_0^2 (\mathcal{E}_r - \frac{j\sigma}{\omega \mathcal{E}_0}) {\rm E} = 0$
▲ [∞] スタディ 1 {std1}	▼ 設定
 	計算対象:
 ▶ 書 ジョブコンフィギュレーション ▶ ■ 結果 	完全場
	▼ フィジックス制御メッシュ
	✓ 有効
	和八女糸91人。 lambda/10
	▼ ポートスイープ設定
	□ ポートスイープをアクティベート
	▷ 従属変数

メッシュ設定による違い(周期境界)

フィジックス制御メッシュ有効

本日の内容

- 1. メタサーフェス・メタレンズの概要
- 2. 誘電体導波路とCOMSOLによる電磁場解析
- 3. 可変焦点メタレンズ

4. まとめ

CAD Data of lens #1

広い焦点距離調整が期待

製作結果と透過特性

透過率と位相差の傾向は比較的一致した。

本日の内容

- 1. メタサーフェス・メタレンズの概要
- 2. 誘電体導波路とCOMSOLによる電磁場解析
- 3. 可変焦点メタレンズ

4. まとめ

まとめ

- マルチフィジックス解析ソフトCOMSOLを用いてSi柱 メタ原子に関する電磁場解析を行った。
- 東工大のスーパーコンピュータTSUBAME3.0の利用 により、大規模な計算が可能となった。
- ガラス基板上に形成されたSi 8角柱を用いて、波長 900 nmの近赤外光において透過率60%以上、位相 差0~2πを達成する構造が得られることが分かった。
- 実際にメタレンズを製作し、可変焦点を確認した。
- ✓ 斜め入射、他の波長に対する応答性
 ✓ ナノ構造の光学応答を、どのようにマクロな 光学素子と対応づけるか?たとえばCOMSOLの光 線光学モジュールに持っていけるか?

ご清聴ありがとうございました

